FDA Friday

FDA Friday - Robert Allen, PhD

This #FDAFriday series consists of mini-interviews with former FDA regulators. Our goals are twofold: (1) help students and professionals interested in Regulatory Affairs see what career paths are possible, and (2) talk about some of the various roles at FDA to demonstrate the diversity of responsibilities at the Agency. If you are a former FDA employee and would like to participate, please email us at info@acknowledge-rs.com.


I really enjoyed working with FDA reviewers and managers. You might think that FDA employees are focused on just rules and red tape, however, people there are very passionate about public health, and creative in getting things done that benefit patients within the framework of rules and regulations.
— Robert Allen, PhD
2019_MCRA_Robert (1).jpg

Dr. Allen received his bachelor’s and doctorate degrees in Bioengineering from the University of Pittsburgh, Swanson School of Engineering. As a Ph.D. candidate, his research focus was in cellular and medical product engineering. In 2015, he began work at FDA as an American Institute for Medical and Biological Engineering (AIMBE) Scholar. After completing his tenure as an AIMBE fellow, Dr. Allen joined the FDA’s Center for Devices and Radiological Health (CDRH) as a biomedical engineer and staff fellow. Robert acted as a lead reviewer in the former Division of Cardiovascular Devices, coordinating the review of premarket regulatory submissions such as 510(k)s, Pre-Submissions, and various supplements for Investigational Device Exemption (IDE) and Pre-Market Application (PMA) submissions. He also worked as a biocompatibility consulting reviewer, evaluating the potential biological response patients could have to a medical device.


Start off by giving us some more detail about your time at FDA.

I spent three years at FDA. For the first nine months, I was an American Institute for Medical and Biological Engineering (AIMBE) Scholar, working on strategic projects for the Center for Devices and Radiological Health (CDRH). Afterward, I became a premarket device reviewer for CDRH. My titles included “Biomedical Engineer” and “Staff Fellow”, and my roles included Lead Reviewer and Biocompatibility Consulting Reviewer for the Division of Cardiovascular Devices (now referred to as DHT2B), Vascular Surgery Devices Branch (now known as the Vascular and Endovascular Devices Team).

Tell us a little more about being an American Institute for Medical and Biological Engineering (AIMBE) Scholar. Can you briefly describe the program and talk about your responsibilities in that role?

The AIMBE Scholars program is an opportunity for early career PhDs in biomedical engineering or related fields to serve as expert advisors to policy makers at CDRH. The first cohort of AIMBE Scholars started at FDA in 2014. To date, AIMBE Scholars have worked on a wide range of projects aimed at improving the review process, providing tools to support regulatory decision-making, and developing policies to promote innovation and public safety. More information on the program can be found at https://aimbe.org/scholars-program/.

My AIMBE Scholar appointment was with the Office of Device Evaluation (now known as the Office of Product Evaluation and Quality, or OPEQ), where I assisted with efforts to reclassify a large number of medical devices. Reclassification is a process that impacts the regulatory requirements for each reclassified device. It is a complex process involving multiple teams across CDRH. To coordinate this process, I needed to learn the details of the process, then guide each team through it. This involved project management and lots of internal written and verbal communication. Throughout the process I worked with upper management, middle management, and individual premarket reviewers.

In addition to our FDA projects, AIMBE Scholars also attended site visits to current and potential industry sponsors. We also presented our projects at the AIMBE Annual Meeting to academic and industry members of AIMBE. These were great opportunities to network and hone our regulatory communication skills.

What about your experience as an AIMBE scholar made it clear to you that you wanted to spend more time at FDA?

Two things: the public health impact of FDA’s work, and the people at FDA. Regarding public health impact, it was fulfilling to work on projects where the immediate goal was to benefit public health. Prior to this work, I was a graduate student developing early-stage technologies that might one day help patients. While such research could be important in the long-term, it takes many years to prove a new technology, and many more years to develop a medical product and obtain regulatory approval/clearance. In contrast, the work I did at FDA changed the regulatory requirements for each reclassified device, which directly impacts the speed and cost to develop and market new products in that device category. It was thrilling to be able to see how my work could have a positive impact on patients in the short term.

Regarding people, I really enjoyed working with FDA reviewers and managers. You might think that FDA employees are focused on just rules and red tape, however, people there are very passionate about public health, and creative in getting things done that benefit patients within the framework of rules and regulations.

You worked as a lead reviewer in the Vascular Surgery Devices Branch. Before your time at FDA, what was your experience with blood-contacting cardiovascular devices?

Prior to FDA, I helped develop a resorbable vascular graft, which is a blood-contacting permanent implant. This was part of my dissertation work as a graduate student at the University of Pittsburgh, under the mentorship of Dr. Yadong Wang. That work helped me to understand how device materials interact with blood. I also learned about the design requirements for implants that need to withstand and maintain blood pressure, and the various failure modes to watch for.

While this experience was certainly helpful to my work as a lead reviewer, it was not a prerequisite for the job. After starting as a reviewer, I learned that FDA considers a wide range of backgrounds for lead reviewers, though they are most commonly engineers or scientists. Additionally, most of what I needed to know I learned on the job. FDA review teams have a wealth of collective experience and scientific knowledge about their devices. Coming in as a fresh Ph.D., I certainly did not know even 10% of what it takes to review a device. But the review team did and they got me up to speed quickly.

What was your favorite thing about working with a review team on a premarket notification (510(k)) or premarket approval (PMA) submission?

I enjoyed “standing on the shoulders of giants”, so to speak. I had the privilege of working with seasoned scientists, engineers, medical officers, and veterinary officers. I learned so much from these FDA veterans over the course of my premarket reviews. Much of their insight comes uniquely from experience reviewing devices, so it felt like I was learning things I couldn’t learn anywhere else.

What does it mean to be a biocompatibility reviewer?

Here is my personal take on what a biocompatibility reviewer does: Biocompatibility reviewers focus on reviewing the potential biological response that a patient can have to a medical device. Practically speaking, this means that biocompatibility reviewers review a combination of in vitro and in vivo testing, risk assessments, and rationales for why testing is not needed. These tests, risk assessments, and rationales focus on the impact of the device, or chemicals that can leach out of the device; on the patient’s cells/tissues, blood, and organ systems.

Biocompatibility review is just one of many roles that a premarket device reviewer can play at FDA. For example, I served as both a lead reviewer and a biocompatibility reviewer for premarket device submissions.

What past experience or trait do you think helped you be a successful reviewer during your tenure at FDA?

When I started review work, I thought that my technical expertise would be my most valuable asset for day-to-day work. While it certainly came in handy, the skills that helped me most were actually my communication and consensus building skills. Review teams often include multiple experts with a range of technical backgrounds and communication styles. To complete a review efficiently, we all needed to find common ground regarding priorities, action items, and ultimately, the safety and effectiveness of the device.

What were your favorite FDA submissions to work on and why?

I enjoyed reviewing 30-Day Notices for manufacturing changes. In reviewing these submissions I got to see some of the manufacturing steps for the device, then evaluate and/or question the thought process behind each manufacturing change. This was fun because I got to see how devices are made; there are a wide range of manufacturing techniques out there, and some of them are fascinating. For the techniques that I already knew well from graduate school, it felt satisfying to leverage my existing knowledge to expedite a review.

What are you up to now and how does your current role incorporate your regulatory experience?

I currently work as a Senior Associate within the Regulatory Affairs team at MCRA. MCRA is a leading advisory firm and Contract Research Organization (CRO) for the medical device industry, with a range of services including regulatory, reimbursement, clinical research, healthcare compliance, and quality assurance. As a Regulatory Affairs Senior Associate at MCRA, I help our US and international clients to write and submit regulatory submissions to achieve and maintain market approval/clearance. These submissions include US FDA submissions, such as 510(k)s, Investigation Device Exemptions (IDE), and Premarket Approvals (PMA). They also include international submissions such as Clinical Evaluation Reports (CER). We also help our clients to develop and execute long-term regulatory strategies.

My FDA experience translates well to my work as a regulatory consultant. I am constantly using my firsthand knowledge of FDA’s regulatory expectations when I write premarket submissions for MCRA’s industry clients. The translation is direct for cardiovascular devices and biocompatibility evaluations, since I worked on those two specific things at FDA. For other device types and different types of testing, I can extrapolate from what I know, while also leveraging the experience of other MCRA employees. One of the great things about working at MCRA is the depth of experience that MCRA has in a range of product areas. For example, if I’m working on an orthopedic device submission, I can ask any of our 5 former FDA orthopedic device reviewers for their firsthand knowledge. I can also borrow the experience of MCRA’s other seasoned regulatory consultants who have a long track record of developing successful orthopedic device submissions.

How is working in industry similar and/or different than working at FDA?

As a regulatory consultant, I’m writing rather than reviewing device submissions. However, the process of writing submissions is very similar to that of FDA review. For example, as a consultant I still think about things like technological characteristics, benefit/risk, and the appropriateness of predicate devices. I also frequently reference FDA Guidances and regulations, just as I did at FDA. In addition, I often change hats and “review” my draft submissions from the perspective of an FDA reviewer; this helps me to anticipate FDA questions and thereby strengthen the overall submission. So overall, writing a submission doesn’t feel too different from reviewing one.

Of course, there are some differences in consulting vs. FDA review. As a consultant at MCRA, I work on a larger range of project types than I did as an FDA reviewer. This includes both the types of devices and the types of work products. For example, at FDA, I worked only on cardiovascular devices without electrical components, also known as the “plumbing” devices. As a consultant with six months experience at MCRA, I have already worked on a larger range of technologies than I did at FDA, including cardiovascular, orthopedic, and wound care devices. Similarly, at FDA I mainly worked on US premarket reviews. As a consultant at MCRA, I do write US premarket submissions, but I also work on international submissions as well as developing overall regulatory strategy recommendations for clients, which consider not just the technology but also the regulatory time and costs of each potential pathway. I like the variety that comes with working as a consultant!


More about Robert Allen, PhD

For more information about Robert, please visit his LinkedIn page; and to learn more about MCRA, LLC, please visit their website.

FDA Friday - Dulciana Chan, M.S.E.

This #FDAFriday series consists of mini-interviews with former FDA regulators. Our goals are twofold: (1) help students and professionals interested in Regulatory Affairs see what career paths are possible, and (2) talk about some of the various roles at FDA to demonstrate the diversity of responsibilities at the Agency. If you are a former FDA employee and would like to participate, please email us at info@acknowledge-rs.com.


A common mistake that manufacturers make in their Investigational Device Exemption (IDE) submissions is not having a plan to deal with missing data. It is important to have a plan upfront so that the data from all patients can be used.
— Dulciana Chan, M.S.E.
Chan - head shot.BW.JPG

Dulciana Chan received her B.S. in Biomedical Engineering from Johns Hopkins University in 2002, and her M.S.E. in Bioengineering from the University of Maryland in 2010. Directly following her undergraduate degree, Dulciana began her FDA career as a research associate in the Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratories (OSEL). A year later, she became a Biomedical Engineer at FDA, and for 14 years operated in various branches of the administration, including as a scientific reviewer and policy analyst in the Office of Device Evaluation (ODE), and as an OSEL principal investigator.

While working at FDA, Dulciana received numerous honors and awards, including the 2014 CDRH Honor Award and the 2014 FDA Scientific Achievement Award for Excellence in Analytical Science. Dulciana has extensive experience in the areas of electromagnetic compatibility (EMC) testing and electrical safety, and is an asset to Acknowledge Regulatory Strategies, where she is a Senior Regulatory Specialist.


Tell us a little bit about your time at FDA.

I started at the FDA as a research associate in the Center for Devices and Radiological Health (CDRH) in the Office of Science and Engineering Laboratories (OSEL). I worked on several research projects and gained skills including computational modeling and electromagnetic compatibility. One of my main projects focused on optical recording of cardiac myocyte monolayers to study cardiac arrhythmias. After my first year at FDA, I also became a scientific lead reviewer in the Office of Device Evaluation (ODE). Fortunately, I was able to continue performing research in OSEL while doing premarket reviews for devices in ODE for the next 14 years.

Can you tell us a little more about your research in the Office of Science and Engineering Laboratories (OSEL)?

The lab I was in began to use pluripotent stem cell derived cardiomyocytes for evaluating drug-induced arrhythmias. It was part of a larger program to predict drug proarrhythmic risk in cells prior to the clinical studies that are required for new drugs. This research was very rewarding in clinical relevance and scope.

You also worked as IDE staff while you were at FDA. What was one of the common mistakes you saw companies make when submitting their clinical study to FDA?

A common mistake that manufacturers make in their Investigational Device Exemption (IDE) submissions is not having a plan to deal with missing data. It is important to have a plan upfront so that the data from all patients can be used. The reality is that there will be missing data, whether from a patient missing a follow-up or a missing test or outcome. However, with preplanning, the data can still be interpreted correctly.

What was your favorite thing about working with a review team on a premarket notification/approval submission?

One of the benefits of working with a review team is being able to access the knowledge of an expert. Often there may be an aspect about a device that you only have high level knowledge about. The review team can quickly explain the technicalities to you in a meaningful way. Their expertise might also help in identifying potential problems.

What past experience or trait do you think helped you be a successful reviewer/during your tenure at FDA?

I think being a lifelong learner helped me be a successful reviewer. Some might see the process of reviewing medical devices as repetitive. However, I found that each product provided a unique learning experience due to the many types of devices, regulation pathways, and emerging public health issues to learn about. There were endless ways to learn new things at the FDA.

What were your favorite FDA submissions to work on and why?

My favorite FDA submissions were IDEs because I learned about the details of a clinical study and about an emerging technology or trend. It was also nice to ensure that all the aspects necessary for a successful clinical study were planned out. Although there was pre-clinical work performed before an IDE submission, it was interesting to see a device at the beginning of its regulatory path.

What's something that you learned from FDA that helped you in your current position?

Working at FDA helped me learn team communication and managing expectations. Everyone’s time is valuable and it is important to make the most of team meetings. When leading a team, I aim to let each member of the team know the goal, their responsibility, and potential outcomes.

How does your current role incorporate or benefit from your regulatory experience?

Many times, companies are not sure what to submit to the FDA so they submit everything (test report and data), which can be overwhelming to an FDA reviewer. I think my regulatory experience can help companies determine what to submit so that they clearly show they meet all FDA requirements.


More about Dulciana Chan, M.S.E.

For more information about Dulciana, please visit her LinkedIn page.

FDA Friday - Srinidhi Nagaraja, PhD

This #FDAFriday series consists of mini-interviews with former FDA regulators. Our goals are twofold: (1) help students and professionals interested in Regulatory Affairs see what career paths are possible, and (2) talk about some of the various roles at FDA to demonstrate the diversity of responsibilities at the Agency. If you are a former FDA employee and would like to participate, please email us at info@acknowledge-rs.com.


While working on a premarket approval (PMA) submission, I always enjoyed the diversity in skills and expertise within the team. It was a great opportunity to listen to and learn from medical officers, toxicologists, and veterinarians, and better understand their perspective of the risks and benefits of a particular device.
— Srinidhi Nagaraja, PhD
Nagaraja - head shot.BW.JPG

Dr. Nagaraja received his Doctorate and Master of Science degrees in Mechanical Engineering from the Georgia Institute of Technology, following a Bachelor of Science degree in Mechanical Engineering from the University of Michigan. In his role at FDA, Srinidhi acted as a senior consultant for mechanical safety of premarket medical device submissions, including IDE, PMA and 510(k) applications. He also analyzed post market mechanical failures, with expertise in cardiovascular and orthopedic devices. Concurrent with his time at FDA, Srinidhi was an affiliate faculty member at the University of Maryland, and developed an active research program improving assessment and studying the integrity of cardiovascular and spinal devices.


Tell us a little bit about your time at FDA.

I spent 10 years at the FDA’s Office of Science and Engineering Laboratories (OSEL) in the Center for Devices and Radiological Health (CDRH). Not many in industry are aware that CDRH has facilities to perform device research and testing. During my time at FDA, my responsibilities spanned both the regulatory and science based mission of CDRH. For example, I was a technical consultant to the review teams in the Office of Device Evaluation (ODE) for various regulatory submissions. My area of expertise was mechanical safety and performance of medical devices. In particular, I was involved in evaluating the durability, corrosion resistance, and mechanics of various medical devices. I was also a principal investigator for research studies focused in areas such as spinal biomechanics, nitinol durability, and corrosion susceptibility of implants. These studies were performed to help ensure that CDRH was ready to evaluate emerging and innovative medical technologies. In addition, the research aided in the development of appropriate testing standards (e.g. ASTM or ISO standards) or acceptance criteria for use by the medical device community during design verification activities.

How did your research in OSEL inform your work as a reviewer?

One example of how my research informed regulatory review was a study to better understand in vivo corrosion resistance of nitinol implants. This was an important topic within the implant community as there was considerable debate regarding suitable acceptance criteria during an FDA workshop that I co-organized in 2012. We conducted an animal study to address the issues raised and provide scientific data to help determine acceptable limits for the corrosion of implants. The papers published on this topic have helped clients I work with in my current position as part of design verification testing activities, and also have been referenced by FDA during regulatory review.

What was your favorite thing about working with a review team on a premarket notification or approval submission?

While working on a premarket approval (PMA) submission, I always enjoyed the diversity in skills and expertise within the team. It was a great opportunity to listen to and learn from medical officers, toxicologists, and veterinarians, and better understand their perspective of the risks and benefits of a particular device. I also was fortunate to work on PMAs in many different product areas, especially in those where the use of nitinol was increasing. This really made the day-to-day work fun, as I needed to think critically about how to apply mechanics principals to various significant risk devices.

While at FDA, you were also affiliate faculty at the University of Maryland. How did you swing that sweet gig? What was it like having that joint appointment?

It was great having a faculty appointment at the University of Maryland while at FDA. The connection was beneficial for both FDA and the university’s Bioengineering Department. As a result of the joint appointment, I was able to advise PhD candidates and participate in seminars and collaborate on research studies at the university. My dual position also created opportunities for University of Maryland students to gain experiences in regulatory science and device approval process as FDA interns. Overall it was a wonderful experience, and allowed me to mentor undergraduates and graduate students pursuing biomedical engineering degrees.

What are you up to these days?

I left FDA over a year ago and started at G. Rau Inc., which is an independent medical device testing laboratory in the Bay Area. Our company provides standard and custom mechanical testing (e.g., durability, corrosion) and technical consulting to medical device companies. My role at G. Rau Inc. is to support device companies seeking approval/clearance of their device. In particular, we help establish testing strategies, conduct testing to characterize device safety and performance, and address FDA deficiencies during the approval/clearance process.

How does your current role incorporate or benefit from your regulatory experience?

I think there is a direct benefit to having regulatory experience. I apply my previous FDA regulatory and research experiences to help device companies with design verification testing and other scientific matters in order to demonstrate the mechanical safety and performance of their device. For example, my reviews of devices at FDA were focused on analyzing testing plans, reviewing mechanical test reports, and providing technical recommendations to device companies. Now, I use those experiences to help companies outline an approach to successfully establish safety and performance of their device.

What do you think is a common misconception about your current company?

One misconception is that our company provides testing and technical consulting solely for nitinol-based products. However, our testing capabilities and expertise are fairly broad, allowing for testing of devices manufactured from other materials (e.g. titanium spinal components).


More about Srinidhi Nagaraja, PhD

For more information about Srinidhi, please visit his LinkedIn page, and for more information on G. Rau Inc., please feel free to contact Dr. Nagaraja by email <srinidhi.nagaraja@g-rau.com> or click here.

FDA Friday: Reclassification

The longer you know someone, the more you learn about them. Well, the same goes for medical devices! As knowledge about a medical device increases, we inevitably have a better understanding on its benefits and risks. As our understanding of a device evolves over time, it is possible that the classification of the device might need a little update. There are two different ways for a medical device to be reclassified at FDA, both of which we review below.

First, there is a way for a medical device to be reclassified as described in the Food, Drug and Cosmetic Act (the Act). Under Section 513(e) of the Act, FDA may reclassify a device based on new information, whether it is discovered on their own, or in response to a petition from an interested person. In this case, “new information” is defined as publicly available, valid scientific evidence. If FDA or a petitioner proposes that a device be reclassified to a lower class (say from the higher risk Class III to a moderate risk Class II), sufficient and valid scientific evidence must be provided in order to support the determination. In July of 2012, the Food and Drug Administration Safety and Innovation Act (FDASIA) was created, which changed the reclassification process to an administrative order process instead of rulemaking. According to FDA’s website that discusses reclassification, in order to reclassify a device under this section of the FD&C Act, FDA must do the following before making the reclassification final:

§  Publish a proposed order in the Federal Register that includes proposed reclassification and summary of the scientific evidence supporting the reclassification

§  Have a panel meeting for the device classification before or after the proposed order has been published

§  Take comments from the public docket into account

Image from https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDRH/CDRHTransparency/ucm378724.htm

Image from https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDRH/CDRHTransparency/ucm378724.htm

There are also additional rules and guidelines that apply depending on the original class level, and the new class level for a device. For example, for devices being reclassified from Class II to Class III, the scientific evidence must indicate that the general and special controls are insufficient to provide reasonable assurance of safety and effectiveness. Conversely, if a device is being reclassified from Class III to Class II, the scientific evidence must show the opposite; that the general and special controls are sufficient to provide reasonable safety and effectiveness. Lastly, if a device is being reclassified to Class I from either Class III or Class II, the scientific evidence must show that the general controls alone are sufficient to provide reasonable assurance of safety and effectiveness.

 

The other route for devices reclassification is described in Section 513(f)(3) of the FD&C Act. This originates from the understanding that any device not available before the Medical Device Amendments in 1976 was automatically classified as Class III. This classification was determined regardless of any risk the device posed, and without undergoing any FDA rulemaking processes. These medical devices are more commonly known as postamendment devices. Unlike the process above, these devices may only be considered for reclassification if the initiative comes from FDA or a petition from a manufacturer or importer. Similar to the 513(e) process discussed in the previous paragraph, reclassification of a device can only be made when sufficient regulatory controls can provide reasonable assurance of safety and effectiveness. A device reclassification panel may also be called, should FDA receive a petition requesting reclassification. After all information has been considered, FDA will determine whether the reclassification petition is approved or denied. Following approval, the order describes both the reason for reclassification, as well as any of the device’s risks to patient health.

 

By the way, if you’re wondering where the whole de novo process fit here, you should check our previous blogs here along with the update here. Keep in mind, a de novo request (per 513(f)(2) of the FD&C Act) is a file where a submitter can request a new classification altogether. Therefore, we don’t really consider it a ‘reclassification’ per the definition of our subject in this blog.

 

To see a full list of medical devices that have been reclassified since 2013, visit this link. If you’re wondering why the list only goes back five years, it’s because it wasn’t until FDASIA was enforced in 2012 that FDA was required to annually post the devices reclassified in the year prior.

 

Additional Reading:

  1. Overview of Medical Device Classification and Reclassification

  2. Classify your Medical Device

FDA Friday: Updates to our Previous De Novo Pathway Blog

1.jpg

A little over two years ago, in one of our earlier blog posts, we discussed the de novo pathway. Since then, while the fundamentals of the program have remained the same, several changes have occurred to this pathway in terms of user fees and review time. We’d like to bring you up to speed on some of the changes in this blog post.

Briefly, the de novo pathway (as mentioned in our previous blog post) is an alternate pathway added through the Food and Drug Administration Modernization Act of 1997 (FDAMA). This pathway was added in order to classify novel, low- to moderate-risk Class I and Class II medical devices that did not have an acceptable predicate device (in order to establish substantial equivalence via the 510(k) pathway), and had not already been classified as Class III (“high-risk” devices).

There are still two routes for a de novo classification:

1.       Submitting a de novo request to the FDA after an NSE determination in response to a 510(k) submission.

or,

2.        If there is no legally marketed device upon which to base a determination of substantial equivalence, the sponsor may submit a de novo request without first submitting a 510(k) and receiving an NSE determination.

 

Such devices cleared through the de novo pathway may be used as predicates for future 510(k) submissions. Though not required, FDA strongly recommends a Pre-Submission in order to obtain early feedback from FDA, saving the submitting company both time and money. A Pre-Submission will not only help sponsors obtain feedback on whether a device may be eligible for the  de novo classification process, but also feedback on any on non-clinical and/or clinical data that will likely be necessary to support the de novo request.

In terms of the submittal, the de novo application should be submitted as an e-copy to the appropriate Document Control Center in CDRH or CBER. FDA’s goal is make a decision on the de novo request in 150 days. Since 2010, FDA has been releasing summaries of the devices cleared through the de novo process which will help sponsors that may wish to use the device as a predicate for future 510(k) submissions. Starting on October 1, 2017, changes were made to the user fees that are as follows: FDA now charges a fee for review of the de novo application unless you qualify for one of the exceptions:

1.        The device being submitted is a device intended solely for a pediatric population

or,

2.       Any application from a state or federal government entity

 

In 2017, FDA also released guidance documents on the de novo Classification Process and User Fees and Refunds for de novo Classification Requests.  De novo may be a faster pathway for you to get your novel, low- to moderate- risk devices to the market. Ask your regulatory consultant if a de novo is right for you!

 

Additional Reading (Guidance Documents):

1.        Our Previous Blog about De Novos

2.        De Novo Classification Process

3.       User Fees and Refunds for De Novo Classification Requests

4.       FDA and Industry Actions on De Novo Classification Requests: Effect on FDA Review Clock and Goals

5.       Acceptance Review for De Novo Classification Requests